功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Many modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets. Consequently, there is growing interest in machine learning and artificial intelligence applications that can harness this `data deluge'. This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications. We explain the common types of machine learning algorithms and typical tasks that can be solved, illustrating the basics with concrete examples from healthcare. Lastly, we provide an outlook on open challenges, limitations, and potential impacts of machine-learning-powered medicine.
translated by 谷歌翻译
We introduce an end-to-end computational framework that enables hyperparameter optimization with the DeepHyper library, accelerated training, and interpretable AI inference with a suite of state-of-the-art AI models, including CGCNN, PhysNet, SchNet, MPNN, MPNN-transformer, and TorchMD-Net. We use these AI models and the benchmark QM9, hMOF, and MD17 datasets to showcase the prediction of user-specified materials properties in modern computing environments, and to demonstrate translational applications for the modeling of small molecules, crystals and metal organic frameworks with a unified, stand-alone framework. We deployed and tested this framework in the ThetaGPU supercomputer at the Argonne Leadership Computing Facility, and the Delta supercomputer at the National Center for Supercomputing Applications to provide researchers with modern tools to conduct accelerated AI-driven discovery in leadership class computing environments.
translated by 谷歌翻译
Recently, there has been an interest in improving the resources available in Intrusion Detection System (IDS) techniques. In this sense, several studies related to cybersecurity show that the environment invasions and information kidnapping are increasingly recurrent and complex. The criticality of the business involving operations in an environment using computing resources does not allow the vulnerability of the information. Cybersecurity has taken on a dimension within the universe of indispensable technology in corporations, and the prevention of risks of invasions into the environment is dealt with daily by Security teams. Thus, the main objective of the study was to investigate the Ensemble Learning technique using the Stacking method, supported by the Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) algorithms aiming at an optimization of the results for DDoS attack detection. For this, the Intrusion Detection System concept was used with the application of the Data Mining and Machine Learning Orange tool to obtain better results
translated by 谷歌翻译
Semantic communications seeks to transfer information from a source while conveying a desired meaning to its destination. We model the transmitter-receiver functionalities as an autoencoder followed by a task classifier that evaluates the meaning of the information conveyed to the receiver. The autoencoder consists of an encoder at the transmitter to jointly model source coding, channel coding, and modulation, and a decoder at the receiver to jointly model demodulation, channel decoding and source decoding. By augmenting the reconstruction loss with a semantic loss, the two deep neural networks (DNNs) of this encoder-decoder pair are interactively trained with the DNN of the semantic task classifier. This approach effectively captures the latent feature space and reliably transfers compressed feature vectors with a small number of channel uses while keeping the semantic loss low. We identify the multi-domain security vulnerabilities of using the DNNs for semantic communications. Based on adversarial machine learning, we introduce test-time (targeted and non-targeted) adversarial attacks on the DNNs by manipulating their inputs at different stages of semantic communications. As a computer vision attack, small perturbations are injected to the images at the input of the transmitter's encoder. As a wireless attack, small perturbations signals are transmitted to interfere with the input of the receiver's decoder. By launching these stealth attacks individually or more effectively in a combined form as a multi-domain attack, we show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low. These multi-domain adversarial attacks pose as a serious threat to the semantics of information transfer (with larger impact than conventional jamming) and raise the need of defense methods for the safe adoption of semantic communications.
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
translated by 谷歌翻译